Source code for stingray.powerspectrum

import copy
import warnings
from collections.abc import Generator, Iterable

import numpy as np
import scipy
import scipy.optimize
import scipy.stats

import stingray.utils as utils
from stingray.crossspectrum import AveragedCrossspectrum, Crossspectrum
from stingray.gti import bin_intervals_from_gtis, check_gtis
from stingray.stats import pds_probability, amplitude_upper_limit

from .events import EventList
from .gti import cross_two_gtis
from .lightcurve import Lightcurve
from .fourier import avg_pds_from_iterable, unnormalize_periodograms
from .fourier import avg_pds_from_events
from .fourier import fftfreq, fft
from .fourier import get_flux_iterable_from_segments
from .fourier import rms_calculation, poisson_level

try:
    from tqdm import tqdm as show_progress
except ImportError:

    def show_progress(a, **kwargs):
        return a


__all__ = ["Powerspectrum", "AveragedPowerspectrum", "DynamicalPowerspectrum"]


[docs] class Powerspectrum(Crossspectrum): type = "powerspectrum" """ Make a :class:`Powerspectrum` (also called periodogram) from a (binned) light curve. Periodograms can be normalized by either Leahy normalization, fractional rms normalization, absolute rms normalization, or not at all. You can also make an empty :class:`Powerspectrum` object to populate with your own fourier-transformed data (this can sometimes be useful when making binned power spectra). Parameters ---------- data: :class:`stingray.Lightcurve` object, optional, default ``None`` The light curve data to be Fourier-transformed. norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" The normaliation of the power spectrum to be used. Options are "leahy", "frac", "abs" and "none", default is "frac". Other Parameters ---------------- gti: 2-d float array ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care, especially if these GTIs have overlaps with the input object GTIs! If you're getting errors regarding your GTIs, don't use this and only give GTIs to the input object before making the power spectrum. skip_checks: bool Skip initial checks, for speed or other reasons (you need to trust your inputs!). Attributes ---------- norm: {"leahy" | "frac" | "abs" | "none" } The normalization of the power spectrum. freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples. power: numpy.ndarray The array of normalized squared absolute values of Fourier amplitudes. power_err: numpy.ndarray The uncertainties of ``power``. An approximation for each bin given by ``power_err= power/sqrt(m)``. Where ``m`` is the number of power averaged in each bin (by frequency binning, or averaging power spectra of segments of a light curve). Note that for a single realization (``m=1``) the error is equal to the power. df: float The frequency resolution. m: int The number of averaged powers in each bin. n: int The number of data points in the light curve. nphots: float The total number of photons in the light curve. """ def __init__(self, data=None, norm="frac", gti=None, dt=None, lc=None, skip_checks=False): self._type = None if lc is not None: warnings.warn( "The lc keyword is now deprecated. Use data " "instead", DeprecationWarning ) if data is None: data = lc good_input = data is not None if good_input and not skip_checks: good_input = self.initial_checks( data1=data, data2=data, norm=norm, gti=gti, lc1=lc, lc2=lc, dt=dt ) norm = norm.lower() self.norm = norm self.dt = dt if not good_input: return self._initialize_empty() return self._initialize_from_any_input(data, dt=dt, norm=norm)
[docs] def rebin(self, df=None, f=None, method="mean"): """ Rebin the power spectrum. Parameters ---------- df: float The new frequency resolution. Other Parameters ---------------- f: float The rebin factor. If specified, it substitutes ``df`` with ``f*self.df``, so ``f>1`` is recommended. Returns ------- bin_cs = :class:`Powerspectrum` object The newly binned power spectrum. """ bin_ps = Crossspectrum.rebin(self, df=df, f=f, method=method) bin_ps.nphots = bin_ps.nphots1 return bin_ps
[docs] def compute_rms( self, min_freq, max_freq, poisson_noise_level=None, white_noise_offset=None, deadtime=0.0 ): """ Compute the fractional rms amplitude in the power spectrum between two frequencies. Parameters ---------- min_freq: float The lower frequency bound for the calculation. max_freq: float The upper frequency bound for the calculation. Other parameters ---------------- poisson_noise_level : float, default is None This is the Poisson noise level of the PDS with same normalization as the PDS. If poissoin_noise_level is None, the Poisson noise is calculated in the idealcase e.g. 2./<countrate> for fractional rms normalisation Dead time and other instrumental effects can alter it. The user can fit the Poisson noise level outside this function using the same normalisation of the PDS and it will get subtracted from powers here. white_noise_offset : float, default None This is the white noise level, in Leahy normalization. In the ideal case, this is 2. Dead time and other instrumental effects can alter it. The user can fit the white noise level outside this function and it will get subtracted from powers here. Returns ------- rms: float The fractional rms amplitude contained between ``min_freq`` and ``max_freq``. rms_err: float The error on the fractional rms amplitude. """ minind = self.freq.searchsorted(min_freq) maxind = self.freq.searchsorted(max_freq) min_freq = self.freq[minind] # To avoid corner case of searchsorted, where maxind goes out of the array if maxind >= len(self.freq) - 1: max_freq = self.freq[maxind - 1] else: max_freq = self.freq[maxind] nphots = self.nphots # distinguish the rebinned and non-rebinned case if isinstance(self.m, Iterable): M_freq = self.m[minind:maxind] K_freq = self.k[minind:maxind] freq_bins = 1 else: M_freq = self.m K_freq = self.k freq_bins = maxind - minind T = self.dt * self.n if white_noise_offset is not None: powers = self.power[minind:maxind] warnings.warn( "the option white_noise_offset now deprecated and will be " "removed in the next major release. The routine" "is correct only with non-rebinned power-spectra.", DeprecationWarning, ) if self.norm.lower() == "leahy": powers_leahy = powers.copy() else: powers_leahy = self.unnorm_power[minind:maxind].real * 2 / nphots rms = np.sqrt(np.sum(powers_leahy - white_noise_offset) / nphots) rms_err = self._rms_error(powers_leahy) return rms, rms_err else: if poisson_noise_level is None: poisson_noise_unnorm = poisson_level("none", n_ph=self.nphots) else: poisson_noise_unnorm = unnormalize_periodograms( poisson_noise_level, self.dt, self.n, self.nphots, norm=self.norm ) return rms_calculation( self.unnorm_power[minind:maxind], min_freq, max_freq, self.nphots, T, M_freq, K_freq, freq_bins, poisson_noise_unnorm, deadtime, )
[docs] def _rms_error(self, powers): r""" Compute the error on the fractional rms amplitude using error propagation. Note: this uses the actual measured powers, which is not strictly correct. We should be using the underlying power spectrum, but in the absence of an estimate of that, this will have to do. .. math:: r = \sqrt{P} .. math:: \delta r = \\frac{1}{2 * \sqrt{P}} \delta P Parameters ---------- powers: iterable The list of powers used to compute the fractional rms amplitude. Returns ------- delta_rms: float The error on the fractional rms amplitude. """ nphots = self.nphots p_err = scipy.stats.chi2(2.0 * self.m).var() * powers / self.m / nphots rms = np.sum(powers) / nphots pow = np.sqrt(rms) drms_dp = 1 / (2 * pow) sq_sum_err = np.sqrt(np.sum(p_err**2)) delta_rms = sq_sum_err * drms_dp return delta_rms
[docs] def classical_significances(self, threshold=1, trial_correction=False): """ Compute the classical significances for the powers in the power spectrum, assuming an underlying noise distribution that follows a chi-square distributions with 2M degrees of freedom, where M is the number of powers averaged in each bin. Note that this function will *only* produce correct results when the following underlying assumptions are fulfilled: 1. The power spectrum is Leahy-normalized 2. There is no source of variability in the data other than the periodic signal to be determined with this method. This is important! If there are other sources of (aperiodic) variability in the data, this method will *not* produce correct results, but instead produce a large number of spurious false positive detections! 3. There are no significant instrumental effects changing the statistical distribution of the powers (e.g. pile-up or dead time) By default, the method produces ``(index,p-values)`` for all powers in the power spectrum, where index is the numerical index of the power in question. If a ``threshold`` is set, then only powers with p-values *below* that threshold with their respective indices. If ``trial_correction`` is set to ``True``, then the threshold will be corrected for the number of trials (frequencies) in the power spectrum before being used. Parameters ---------- threshold : float, optional, default ``1`` The threshold to be used when reporting p-values of potentially significant powers. Must be between 0 and 1. Default is ``1`` (all p-values will be reported). trial_correction : bool, optional, default ``False`` A Boolean flag that sets whether the ``threshold`` will be corrected by the number of frequencies before being applied. This decreases the ``threshold`` (p-values need to be lower to count as significant). Default is ``False`` (report all powers) though for any application where `threshold`` is set to something meaningful, this should also be applied! Returns ------- pvals : iterable A list of ``(p-value, index)`` tuples for all powers that have p-values lower than the threshold specified in ``threshold``. """ if not self.norm == "leahy": raise ValueError("This method only works on " "Leahy-normalized power spectra!") if trial_correction: ntrial = self.power.shape[0] else: ntrial = 1 if np.size(self.m) == 1: # calculate p-values for all powers # leave out zeroth power since it just encodes the number of # photons! pv = pds_probability(self.power, n_summed_spectra=self.m, ntrial=ntrial) else: pv = np.array( [ pds_probability(power, n_summed_spectra=m, ntrial=ntrial) for power, m in zip(self.power, self.m) ] ) # need to add 1 to the indices to make up for the fact that # we left out the first power above! indices = np.where(pv < threshold)[0] pvals = np.vstack([pv[indices], indices]) return pvals
[docs] def modulation_upper_limit(self, fmin=None, fmax=None, c=0.95): r""" Upper limit on a sinusoidal modulation. To understand the meaning of this amplitude: if the modulation is described by: ..math:: p = \overline{p} (1 + a * \sin(x)) this function returns a. If it is a sum of sinusoidal harmonics instead ..math:: p = \overline{p} (1 + \sum_l a_l * \sin(lx)) a is equivalent to :math:`\sqrt(\sum_l a_l^2)`. See `stingray.stats.power_upper_limit`, `stingray.stats.amplitude_upper_limit` for more information. The formula used to calculate the upper limit assumes the Leahy normalization. If the periodogram is in another normalization, we will internally convert it to Leahy before calculating the upper limit. Parameters ---------- fmin: float The minimum frequency to search (defaults to the first nonzero bin) fmax: float The maximum frequency to search (defaults to the Nyquist frequency) Other Parameters ---------------- c: float The confidence value for the upper limit (e.g. 0.95 = 95%) Returns ------- a: float The modulation amplitude that could produce P>pmeas with 1 - c probability. Examples -------- >>> pds = Powerspectrum() >>> pds.norm = "leahy" >>> pds.freq = np.arange(0., 5.) >>> # Note: this pds has 40 as maximum value between 2 and 5 Hz >>> pds.power = np.array([100000, 1, 1, 40, 1]) >>> pds.m = 1 >>> pds.nphots = 30000 >>> pds.modulation_upper_limit(fmin=2, fmax=5, c=0.99) 0.1016... """ pds = self if self.norm != "leahy": pds = self.to_norm("leahy") freq = pds.freq fnyq = np.max(freq) power = pds.power freq_mask = freq > 0 if fmin is not None or fmax is not None: if fmin is not None: freq_mask[freq < fmin] = 0 if fmax is not None: freq_mask[freq > fmax] = 0 freq = freq[freq_mask] power = power[freq_mask] maximum_val = np.argmax(power) nyq_ratio = freq[maximum_val] / fnyq # I multiply by M because the formulas from Vaughan+94 treat summed # powers, while here we have averaged powers. return amplitude_upper_limit( power[maximum_val] * pds.m, pds.nphots, n=pds.m, c=c, nyq_ratio=nyq_ratio, fft_corr=True )
[docs] @staticmethod def from_time_array( times, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True ): """ Calculate an average power spectrum from an array of event times. Parameters ---------- times : `np.array` Event arrival times. dt : float The time resolution of the intermediate light curves (sets the Nyquist frequency). Other parameters ---------------- segment_size : float The length, in seconds, of the light curve segments that will be averaged. Only relevant (and required) for ``AveragedPowerspectrum``. gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` Additional, optional Good Time intervals that get intersected with the GTIs of the input object. Can cause errors if there are overlaps between these GTIs and the input object GTIs. If that happens, assign the desired GTIs to the input object. norm : str, default "frac" The normalization of the periodogram. `abs` is absolute rms, `frac` is fractional rms, `leahy` is Leahy+83 normalization, and `none` is the unnormalized periodogram. use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). By default, we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars. """ return powerspectrum_from_time_array( times, dt, segment_size=segment_size, gti=gti, norm=norm, silent=silent, use_common_mean=use_common_mean, )
[docs] @staticmethod def from_events( events, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True ): """ Calculate an average power spectrum from an event list. Parameters ---------- events : `stingray.EventList` Event list to be analyzed. dt : float The time resolution of the intermediate light curves (sets the Nyquist frequency). Other parameters ---------------- segment_size : float The length, in seconds, of the light curve segments that will be averaged. Only relevant (and required) for ``AveragedPowerspectrum``. gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` Additional, optional Good Time intervals that get intersected with the GTIs of the input object. Can cause errors if there are overlaps between these GTIs and the input object GTIs. If that happens, assign the desired GTIs to the input object. norm : str, default "frac" The normalization of the periodogram. `abs` is absolute rms, `frac` is fractional rms, `leahy` is Leahy+83 normalization, and `none` is the unnormalized periodogram. use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). By default, we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars. """ if gti is None: gti = events.gti return powerspectrum_from_events( events, dt, segment_size=segment_size, gti=gti, norm=norm, silent=silent, use_common_mean=use_common_mean, )
[docs] @staticmethod def from_lightcurve( lc, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True ): """ Calculate a power spectrum from a light curve. Parameters ---------- events : `stingray.Lightcurve` Light curve to be analyzed. dt : float The time resolution of the intermediate light curves (sets the Nyquist frequency). Other parameters ---------------- segment_size : float The length, in seconds, of the light curve segments that will be averaged. Only relevant (and required) for ``AveragedPowerspectrum``. gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` Additional, optional Good Time intervals that get intersected with the GTIs of the input object. Can cause errors if there are overlaps between these GTIs and the input object GTIs. If that happens, assign the desired GTIs to the input object. norm : str, default "frac" The normalization of the periodogram. `abs` is absolute rms, `frac` is fractional rms, `leahy` is Leahy+83 normalization, and `none` is the unnormalized periodogram. use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). By default, we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars. """ if gti is None: gti = lc.gti return powerspectrum_from_lightcurve( lc, segment_size=segment_size, gti=gti, norm=norm, silent=silent, use_common_mean=use_common_mean, )
[docs] @staticmethod def from_lc_iterable( iter_lc, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True ): """ Calculate the average power spectrum of an iterable collection of light curves. Parameters ---------- iter_lc : iterable of `stingray.Lightcurve` objects or `np.array` Light curves. If arrays, use them as counts. dt : float The time resolution of the light curves (sets the Nyquist frequency) Other parameters ---------------- segment_size : float The length, in seconds, of the light curve segments that will be averaged. Only relevant (and required) for ``AveragedPowerspectrum``. gti: ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` Additional, optional Good Time intervals that get intersected with the GTIs of the input object. Can cause errors if there are overlaps between these GTIs and the input object GTIs. If that happens, assign the desired GTIs to the input object. norm : str, default "frac" The normalization of the periodogram. `abs` is absolute rms, `frac` is fractional rms, `leahy` is Leahy+83 normalization, and `none` is the unnormalized periodogram. use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). By default, we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars. """ return powerspectrum_from_lc_iterable( iter_lc, dt, segment_size=segment_size, gti=gti, norm=norm, silent=silent, use_common_mean=use_common_mean, )
[docs] def _initialize_from_any_input( self, data, dt=None, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True, save_all=False, ): """ Initialize the class, trying to understand the input types. The input arguments are the same as ``__init__()``. Based on the type of ``data``, this method will call the appropriate ``powerspectrum_from_XXXX`` function, and initialize ``self`` with the correct attributes. """ if isinstance(data, EventList): spec = powerspectrum_from_events( data, dt, segment_size, norm=norm.lower(), silent=silent, use_common_mean=use_common_mean, gti=gti, save_all=save_all, ) elif isinstance(data, Lightcurve): spec = powerspectrum_from_lightcurve( data, segment_size, norm=norm, silent=silent, use_common_mean=use_common_mean, gti=gti, save_all=save_all, ) spec.lc1 = data elif isinstance(data, (tuple, list)): if not isinstance(data[0], Lightcurve): # pragma: no cover raise TypeError(f"Bad inputs to Powerspectrum: {type(data[0])}") dt = data[0].dt # This is a list of light curves. spec = powerspectrum_from_lc_iterable( data, dt, segment_size, norm=norm, silent=silent, use_common_mean=use_common_mean, gti=gti, save_all=save_all, ) else: # pragma: no cover raise TypeError(f"Bad inputs to Powerspectrum: {type(data)}") for key, val in spec.__dict__.items(): setattr(self, key, val) return
[docs] def _initialize_empty(self): """Set all attributes to None.""" self.freq = None self.power = None self.power_err = None self.unnorm_power = None self.unnorm_power_err = None self.df = None self.dt = None self.nphots1 = None self.m = 1 self.n = None self.k = 1 return
[docs] class AveragedPowerspectrum(AveragedCrossspectrum, Powerspectrum): type = "powerspectrum" """ Make an averaged periodogram from a light curve by segmenting the light curve, Fourier-transforming each segment and then averaging the resulting periodograms. Parameters ---------- data: :class:`stingray.Lightcurve`object OR iterable of :class:`stingray.Lightcurve` objects OR :class:`stingray.EventList` object The light curve data to be Fourier-transformed. segment_size: float The size of each segment to average. Note that if the total duration of each :class:`Lightcurve` object in lc is not an integer multiple of the ``segment_size``, then any fraction left-over at the end of the time series will be lost. norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" The normalization of the periodogram to be used. Other Parameters ---------------- gti: 2-d float array ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care, especially if these GTIs have overlaps with the input object GTIs! If you're getting errors regarding your GTIs, don't use this and only give GTIs to the input object before making the power spectrum. silent : bool, default False Do not show a progress bar when generating an averaged cross spectrum. Useful for the batch execution of many spectra. dt: float The time resolution of the light curve. Only needed when constructing light curves in the case where data is of :class:EventList. save_all : bool, default False Save all intermediate PDSs used for the final average. Use with care. This is likely to fill up your RAM on medium-sized datasets, and to slow down the computation when rebinning. skip_checks: bool Skip initial checks, for speed or other reasons (you need to trust your inputs!). Attributes ---------- norm: {``leahy`` | ``frac`` | ``abs`` | ``none`` } The normalization of the periodogram. freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples. power: numpy.ndarray The array of normalized squared absolute values of Fourier amplitudes. power_err: numpy.ndarray The uncertainties of ``power``. An approximation for each bin given by ``power_err= power/sqrt(m)``. Where ``m`` is the number of power averaged in each bin (by frequency binning, or averaging power spectra of segments of a light curve). Note that for a single realization (``m=1``) the error is equal to the power. df: float The frequency resolution. m: int The number of averaged periodograms. n: int The number of data points in the light curve. nphots: float The total number of photons in the light curve. """ def __init__( self, data=None, segment_size=None, norm="frac", gti=None, silent=False, dt=None, lc=None, large_data=False, save_all=False, skip_checks=False, use_common_mean=True, ): self._type = None if lc is not None: warnings.warn( "The lc keyword is now deprecated. Use data " "instead", DeprecationWarning ) # Backwards compatibility: user might have supplied lc instead if data is None: data = lc good_input = data is not None if good_input and not skip_checks: good_input = self.initial_checks( data1=data, data2=data, norm=norm, gti=gti, lc1=lc, lc2=lc, dt=dt, segment_size=segment_size, ) norm = norm.lower() self.norm = norm self.dt = dt self.save_all = save_all self.segment_size = segment_size self.show_progress = not silent self.k = 1 if not good_input: return self._initialize_empty() if isinstance(data, Generator): warnings.warn( "The averaged power spectrum from a generator of " "light curves pre-allocates the full list of light " "curves, losing all advantage of lazy loading. If it " "is important for you, use the " "AveragedPowerspectrum.from_lc_iterable static " "method, specifying the sampling time `dt`." ) data = list(data) return self._initialize_from_any_input( data, dt=dt, segment_size=segment_size, norm=norm, silent=silent, use_common_mean=use_common_mean, save_all=save_all, )
[docs] def initial_checks(self, *args, **kwargs): return AveragedCrossspectrum.initial_checks(self, *args, **kwargs)
[docs] class DynamicalPowerspectrum(AveragedPowerspectrum): type = "powerspectrum" """ Create a dynamical power spectrum, also often called a *spectrogram*. This class will divide a :class:`Lightcurve` object into segments of length ``segment_size``, create a power spectrum for each segment and store all powers in a matrix as a function of both time (using the mid-point of each segment) and frequency. This is often used to trace changes in period of a (quasi-)periodic signal over time. Parameters ---------- lc : :class:`stingray.Lightcurve` or :class:`stingray.EventList` object The time series or event list of which the dynamical power spectrum is to be calculated. segment_size : float, default 1 Length of the segment of light curve, default value is 1 (in whatever units the ``time`` array in the :class:`Lightcurve`` object uses). norm: {"leahy" | "frac" | "abs" | "none" }, optional, default "frac" The normaliation of the periodogram to be used. Other Parameters ---------------- gti: 2-d float array ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` -- Good Time intervals. This choice overrides the GTIs in the single light curves. Use with care, especially if these GTIs have overlaps with the input object GTIs! If you're getting errors regarding your GTIs, don't use this and only give GTIs to the input object before making the power spectrum. Attributes ---------- segment_size: float The size of each segment to average. Note that if the total duration of each input object in lc is not an integer multiple of the ``segment_size``, then any fraction left-over at the end of the time series will be lost. dyn_ps : np.ndarray The matrix of normalized squared absolute values of Fourier amplitudes. The axis are given by the ``freq`` and ``time`` attributes. norm: {``leahy`` | ``frac`` | ``abs`` | ``none``} The normalization of the periodogram. freq: numpy.ndarray The array of mid-bin frequencies that the Fourier transform samples. df: float The frequency resolution. dt: float The time resolution. """ def __init__(self, lc, segment_size, norm="frac", gti=None, dt=None): if isinstance(lc, EventList) and dt is None: raise ValueError("To pass an input event lists, please specify dt") if isinstance(lc, EventList): lc = lc.to_lc(dt) if segment_size < 2 * lc.dt: raise ValueError("Length of the segment is too short to form a " "light curve!") elif segment_size > lc.tseg: raise ValueError( "Length of the segment is too long to create " "any segments of the light curve!" ) AveragedPowerspectrum.__init__( self, data=lc, segment_size=segment_size, norm=norm, gti=gti, dt=dt ) self._make_matrix(lc) def _make_matrix(self, lc): """ Create a matrix of powers for each time step and each frequency step. Time increases with row index, frequency with column index. Parameters ---------- lc : :class:`Lightcurve` object The :class:`Lightcurve` object from which to generate the dynamical power spectrum. """ avg = AveragedPowerspectrum( lc, segment_size=self.segment_size, norm=self.norm, gti=self.gti, save_all=True ) self.dyn_ps = np.array(avg.cs_all).T self.freq = avg.freq current_gti = avg.gti start_inds, end_inds = bin_intervals_from_gtis( current_gti, self.segment_size, lc.time, dt=lc.dt ) tstart = lc.time[start_inds] tend = lc.time[end_inds] self.time = tstart + 0.5 * (tend - tstart) # Assign length of lightcurve as time resolution if only one value if len(self.time) > 1: self.dt = self.time[1] - self.time[0] else: self.dt = lc.n # Assign biggest freq. resolution if only one value if len(self.freq) > 1: self.df = self.freq[1] - self.freq[0] else: self.df = 1 / lc.n
[docs] def rebin_frequency(self, df_new, method="sum"): """ Rebin the Dynamic Power Spectrum to a new frequency resolution. Rebinning is an in-place operation, i.e. will replace the existing ``dyn_ps`` attribute. While the new resolution need not be an integer multiple of the previous frequency resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division. Parameters ---------- df_new: float The new frequency resolution of the dynamical power spectrum. Must be larger than the frequency resolution of the old dynamical power spectrum! method: {"sum" | "mean" | "average"}, optional, default "sum" This keyword argument sets whether the counts in the new bins should be summed or averaged. """ new_dynspec_object = copy.deepcopy(self) dynspec_new = [] for data in self.dyn_ps.T: freq_new, bin_counts, bin_err, _ = utils.rebin_data( self.freq, data, dx_new=df_new, method=method ) dynspec_new.append(bin_counts) new_dynspec_object.freq = freq_new new_dynspec_object.dyn_ps = np.array(dynspec_new).T new_dynspec_object.df = df_new return new_dynspec_object
[docs] def trace_maximum(self, min_freq=None, max_freq=None): """ Return the indices of the maximum powers in each segment :class:`Powerspectrum` between specified frequencies. Parameters ---------- min_freq: float, default ``None`` The lower frequency bound. max_freq: float, default ``None`` The upper frequency bound. Returns ------- max_positions : np.array The array of indices of the maximum power in each segment having frequency between ``min_freq`` and ``max_freq``. """ if min_freq is None: min_freq = np.min(self.freq) if max_freq is None: max_freq = np.max(self.freq) max_positions = [] for ps in self.dyn_ps.T: indices = np.logical_and(self.freq <= max_freq, min_freq <= self.freq) max_power = np.max(ps[indices]) max_positions.append(np.where(ps == max_power)[0][0]) return np.array(max_positions)
[docs] def rebin_time(self, dt_new, method="sum"): """ Rebin the Dynamic Power Spectrum to a new time resolution. While the new resolution need not be an integer multiple of the previous time resolution, be aware that if it is not, the last bin will be cut off by the fraction left over by the integer division. Parameters ---------- dt_new: float The new time resolution of the dynamical power spectrum. Must be larger than the time resolution of the old dynamical power spectrum! method: {"sum" | "mean" | "average"}, optional, default "sum" This keyword argument sets whether the counts in the new bins should be summed or averaged. Returns ------- time_new: numpy.ndarray Time axis with new rebinned time resolution. dynspec_new: numpy.ndarray New rebinned Dynamical Power Spectrum. """ if dt_new < self.dt: raise ValueError("New time resolution must be larger than " "old time resolution!") new_dynspec_object = copy.deepcopy(self) dynspec_new = [] for data in self.dyn_ps: time_new, bin_counts, bin_err, _ = utils.rebin_data( self.time, data, dt_new, method=method ) dynspec_new.append(bin_counts) new_dynspec_object.time = time_new new_dynspec_object.dyn_ps = np.array(dynspec_new) new_dynspec_object.dt = dt_new return new_dynspec_object
def powerspectrum_from_time_array( times, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True, save_all=False, ): """ Calculate a power spectrum from an array of event times. Parameters ---------- times : `np.array` Event arrival times. dt : float The time resolution of the intermediate light curves (sets the Nyquist frequency). Other parameters ---------------- segment_size : float The length, in seconds, of the light curve segments that will be averaged. Only required (and used) for ``AveragedPowerspectrum``. gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` Additional, optional Good Time intervals that get intersected with the GTIs of the input object. Can cause errors if there are overlaps between these GTIs and the input object GTIs. If that happens, assign the desired GTIs to the input object. norm : str, default "frac" The normalization of the periodogram. `abs` is absolute rms, `frac` is fractional rms, `leahy` is Leahy+83 normalization, and `none` is the unnormalized periodogram. use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). By default, we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars. save_all : bool, default False Save all intermediate PDSs used for the final average. Use with care. This is likely to fill up your RAM on medium-sized datasets, and to slow down the computation when rebinning. Returns ------- spec : `AveragedPowerspectrum` or `Powerspectrum` The output periodogram. """ force_averaged = segment_size is not None # Suppress progress bar for single periodogram silent = silent or (segment_size is None) table = avg_pds_from_events( times, gti, segment_size, dt, norm=norm, use_common_mean=use_common_mean, silent=silent, return_subcs=save_all, ) return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) def powerspectrum_from_events( events, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True, save_all=False, ): """ Calculate a power spectrum from an event list. Parameters ---------- events : `stingray.EventList` Event list to be analyzed. dt : float The time resolution of the intermediate light curves (sets the Nyquist frequency) Other parameters ---------------- segment_size : float The length, in seconds, of the light curve segments that will be averaged. Only required (and used) for ``AveragedPowerspectrum``. gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` Additional, optional Good Time intervals that get intersected with the GTIs of the input object. Can cause errors if there are overlaps between these GTIs and the input object GTIs. If that happens, assign the desired GTIs to the input object. norm : str, default "frac" The normalization of the periodogram. `abs` is absolute rms, `frac` is fractional rms, `leahy` is Leahy+83 normalization, and `none` is the unnormalized periodogram. use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). By default, we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars. save_all : bool, default False Save all intermediate PDSs used for the final average. Use with care. This is likely to fill up your RAM on medium-sized datasets, and to slow down the computation when rebinning. Returns ------- spec : `AveragedPowerspectrum` or `Powerspectrum` The output periodogram. """ if gti is None: gti = events.gti return powerspectrum_from_time_array( events.time, dt, segment_size, gti, norm=norm, silent=silent, use_common_mean=use_common_mean, save_all=save_all, ) def powerspectrum_from_lightcurve( lc, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True, save_all=False ): """ Calculate a power spectrum from a light curve Parameters ---------- events : `stingray.Lightcurve` Light curve to be analyzed. dt : float The time resolution of the intermediate light curves (sets the Nyquist frequency) Other parameters ---------------- segment_size : float The length, in seconds, of the light curve segments that will be averaged. Only required (and used) for ``AveragedPowerspectrum``. gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` Additional, optional Good Time intervals that get intersected with the GTIs of the input object. Can cause errors if there are overlaps between these GTIs and the input object GTIs. If that happens, assign the desired GTIs to the input object. norm : str, default "frac" The normalization of the periodogram. `abs` is absolute rms, `frac` is fractional rms, `leahy` is Leahy+83 normalization, and `none` is the unnormalized periodogram. use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). By default, we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars. save_all : bool, default False Save all intermediate PDSs used for the final average. Use with care. This is likely to fill up your RAM on medium-sized datasets, and to slow down the computation when rebinning. Returns ------- spec : `AveragedPowerspectrum` or `Powerspectrum` The output periodogram. """ force_averaged = segment_size is not None # Suppress progress bar for single periodogram silent = silent or (segment_size is None) err = None if lc.err_dist == "gauss": err = lc.counts_err if gti is None: gti = lc.gti table = avg_pds_from_events( lc.time, gti, segment_size, lc.dt, norm=norm, use_common_mean=use_common_mean, silent=silent, fluxes=lc.counts, errors=err, return_subcs=save_all, ) return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) def powerspectrum_from_lc_iterable( iter_lc, dt, segment_size=None, gti=None, norm="frac", silent=False, use_common_mean=True, save_all=False, ): """ Calculate an average power spectrum from an iterable collection of light curves. Parameters ---------- iter_lc : iterable of `stingray.Lightcurve` objects or `np.array` Light curves. If arrays, use them as counts. dt : float The time resolution of the light curves (sets the Nyquist frequency). Other parameters ---------------- segment_size : float, default None The length, in seconds, of the light curve segments that will be averaged. If not ``None``, it will be used to check the segment size of the output. gti : ``[[gti0_0, gti0_1], [gti1_0, gti1_1], ...]`` Additional, optional Good Time intervals that get intersected with the GTIs of the input object. Can cause errors if there are overlaps between these GTIs and the input object GTIs. If that happens, assign the desired GTIs to the input object. norm : str, default "frac" The normalization of the periodogram. `abs` is absolute rms, `frac` is fractional rms, `leahy` is Leahy+83 normalization, and `none` is the unnormalized periodogram. use_common_mean : bool, default True The mean of the light curve can be estimated in each interval, or on the full light curve. This gives different results (Alston+2013). By default, we assume the mean is calculated on the full light curve, but the user can set ``use_common_mean`` to False to calculate it on a per-segment basis. silent : bool, default False Silence the progress bars. save_all : bool, default False Save all intermediate PDSs used for the final average. Use with care. Returns ------- spec : `AveragedPowerspectrum` or `Powerspectrum` The output periodogram. """ force_averaged = segment_size is not None # Suppress progress bar for single periodogram silent = silent or (segment_size is None) common_gti = gti def iterate_lc_counts(iter_lc): for lc in iter_lc: if hasattr(lc, "counts"): n_bin = np.rint(segment_size / lc.dt).astype(int) gti = lc.gti if common_gti is not None: gti = cross_two_gtis(common_gti, lc.gti) err = None if lc.err_dist == "gauss": err = lc.counts_err flux_iterable = get_flux_iterable_from_segments( lc.time, gti, segment_size, n_bin, fluxes=lc.counts, errors=err ) for out in flux_iterable: yield out elif isinstance(lc, Iterable): yield lc else: raise TypeError( "The inputs to `powerspectrum_from_lc_iterable`" " must be Lightcurve objects or arrays" ) table = avg_pds_from_iterable( iterate_lc_counts(iter_lc), dt, norm=norm, use_common_mean=use_common_mean, silent=silent, return_subcs=save_all, ) return _create_powerspectrum_from_result_table(table, force_averaged=force_averaged) def _create_powerspectrum_from_result_table(table, force_averaged=False): """ Copy the columns and metadata from the results of ``stingray.fourier.avg_pds_from_XX`` functions into `AveragedPowerspectrum` or `Powerspectrum` objects. By default, allocates a Powerspectrum object if the number of averaged spectra is 1, otherwise an AveragedPowerspectrum. If the user specifies ``force_averaged=True``, it always allocates an AveragedPowerspectrum. Parameters ---------- table : `astropy.table.Table` results of `avg_cs_from_iterables` or `avg_cs_from_iterables_quick` Other parameters ---------------- force_averaged : bool, default False Returns ------- spec : `AveragedPowerspectrum` or `Powerspectrum` The output periodogram. """ if table.meta["m"] > 1 or force_averaged: cs = AveragedPowerspectrum() else: cs = Powerspectrum() cs.freq = np.array(table["freq"]) cs.power = np.array(table["power"]) cs.unnorm_power = np.array(table["unnorm_power"]) for attr, val in table.meta.items(): setattr(cs, attr, val) if "subcs" in table.meta: cs.cs_all = np.array(table.meta["subcs"]) cs.unnorm_cs_all = np.array(table.meta["unnorm_subcs"]) cs.err_dist = "poisson" if hasattr(cs, "variance") and cs.variance is not None: cs.err_dist = "gauss" cs.power_err = cs.power / np.sqrt(cs.m) cs.unnorm_power_err = cs.unnorm_power / np.sqrt(cs.m) cs.nphots1 = cs.nphots return cs