# Dynamical Power Spectra (on fake data)¶

:

%matplotlib inline

:

# import some modules
import numpy as np
import matplotlib.pyplot as plt
import stingray
stingray.__version__

:

'1.1.2.dev273+g6908e954'

:

# choose style of plots, seaborn-talk produce nice big figures
plt.style.use('seaborn-talk')


## Generate a fake lightcurve¶

:

# Array of timestamps, 10000 bins from 1s to 100s
times = np.linspace(1,100,10000)

# base component of the lightcurve, poisson-like
# the averaged count-rate is 100 counts/bin
noise = np.random.poisson(100,10000)

# time evolution of the frequency of our fake periodic signal
# the frequency changes with a sinusoidal shape around the value 24Hz
freq = 25 + 1.2*np.sin(2*np.pi*times/130)

# Our fake periodic variability with drifting frequency
# the amplitude of this variability is 10% of the base flux
var = 10*np.sin(2*np.pi*freq*times)

# The signal of our lightcurve is equal the base flux plus the variable flux
signal = noise+var

:

# Create the lightcurve object
lc = stingray.Lightcurve(times, signal)


### Visualizing the lightcurve¶

:

lc.plot(labels=['Time (s)', 'Counts / bin'], title="Lightcurve") ### Zomming in..¶

:

lc.plot(labels=['Time (s)', 'Counts / bin'], axis=[20,23,50,160], title='Zoomed in Lightcurve') # A power spectrum of this lightcurve..¶

:

ps = stingray.AveragedPowerspectrum(lc, segment_size=3, norm='leahy')

33it [00:00, 19390.87it/s]

:

plt.plot(ps.freq, ps.power, label='segment size = {}s \n number of segments = {}'.format(3, int(lc.tseg/3)))
plt.title('Averaged Powerspectrum')
plt.xlabel('Frequency (Hz)')
plt.ylabel('Power')
plt.legend()

:

<matplotlib.legend.Legend at 0x16960b7c0> # Let’s look at the Dynamic Powerspectrum..¶

:

dps = stingray.DynamicalPowerspectrum(lc, segment_size=3)

33it [00:00, 17010.20it/s]
33it [00:00, 17857.31it/s]

:

extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)
plt.imshow(dps.dyn_ps, aspect="auto", origin="lower", vmax=0.001,
interpolation="none", extent=extent)
plt.title('Dynamic Powerspecttrum')
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
plt.colorbar(label='Power')

:

<matplotlib.colorbar.Colorbar at 0x16969f910> ## It is actually only one feature drifiting along time¶

# Rebinning in Frequency

:

print("The current frequency resolution is {}".format(dps.df))

The current frequency resolution is 0.3333333333333333


Let’s rebin to a frequency resolution of 1 Hz and using the average of the power

:

dps_new_f = dps.rebin_frequency(df_new=1.0, method="average")

:

print("The new frequency resolution is {}".format(dps_new_f.df))

The new frequency resolution is 1.0


Let’s see how the Dynamical Powerspectrum looks now

:

extent = min(dps_new_f.time), max(dps_new_f.time), min(dps_new_f.freq), max(dps_new_f.freq)
plt.imshow(dps_new_f.dyn_ps, origin="lower", aspect="auto",
interpolation="none", extent=extent)
plt.colorbar()
plt.ylim(15, 30)

:

(15.0, 30.0) # Rebin time¶

Let’s rebin our matrix in the time axis

:

print("The current time resolution is {}".format(dps.dt))

The current time resolution is 3.0


Let’s rebin to a time resolution of 4 s

:

dps_new_t = dps.rebin_time(dt_new=6.0, method="average")

:

print("The new time resolution is {}".format(dps_new_t.dt))

The new time resolution is 6.0

:

extent = min(dps_new_t.time), max(dps_new_t.time), min(dps_new_t.freq), max(dps_new_t.freq)
plt.imshow(dps_new_t.dyn_ps, origin="lower", aspect="auto",
interpolation="none", extent=extent)
plt.colorbar()
plt.ylim(15,30)

:

(15.0, 30.0) ## Let’s trace that drifiting feature.¶

:

# By looking into the maximum power of each segment
max_pos = dps.trace_maximum()

:

plt.plot(dps.time, dps.freq[max_pos], color='red', alpha=1)
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
plt.title('Detected frequency drift')

:

Text(0.5, 1.0, 'Detected frequency drift') # Overlaying this traced function with the Dynamical Powerspectrum¶

:

extent = min(dps.time), max(dps.time), min(dps.freq), max(dps.freq)
plt.imshow(dps.dyn_ps, aspect="auto", origin="lower", vmax=0.001,
interpolation="none", extent=extent, alpha=0.6)
plt.plot(dps.time, dps.freq[max_pos], color='C3', lw=5, alpha=1, label='drifiting function')

plt.ylim(15,30) # zoom-in around 24 hertz

plt.title('Overlay of Drifting fuction and Dynamic Powerspecttrum')
plt.xlabel('Time (s)')
plt.ylabel('Frequency (Hz)')
plt.colorbar(label='Power')
plt.legend()

:

<matplotlib.legend.Legend at 0x1698d2a70> 